
AI Security and Prompt Hacking: Vulnerabilities, Attacks, and

Defenses in Large Language Models

Mattia Vicenzi And AI Friends

April 29, 2025

Abstract

The rapid proliferation and integration of Large Language Models (LLMs) across diverse applications
have introduced significant cybersecurity challenges. While offering unprecedented capabilities, these
models exhibit unique vulnerabilities, primarily stemming from their inherent inability to distinguish
between system instructions and user-provided data within prompts. This report provides a compre-
hensive analysis of the AI security landscape with a specific focus on prompt-based attacks, including
prompt injection (direct and indirect) and jailbreaking. It examines the fundamental mechanisms en-
abling these attacks, explores a detailed taxonomy of attack techniques crowdsourced from initiatives
like HackAPrompt, and contextualizes these threats within established frameworks such as the OWASP
Top 10 for LLM Applications. The analysis extends to current defense mechanisms, evaluating their
effectiveness and limitations concerning input/output filtering, prompt engineering, detection systems,
and adversarial training. Furthermore, the report details methodologies and tools for AI red teaming
and adversarial testing, including Microsoft PyRIT and NVIDIA Garak, crucial for assessing model ro-
bustness. Advanced threats like multi-modal attacks, memory poisoning (e.g., SpAIware), and invisible
injections are discussed, alongside real-world harms impacting the Confidentiality, Integrity, and Avail-
ability (CIA) security triad, potentially extending to physical domains. The report synthesizes findings
from recent research, expert contributions, and practical security assessments, concluding with the on-
going challenges and the critical need for principled, proactive security architectures in the face of an
evolving threat landscape. Real-world exploits and proof-of-concept examples demonstrate how prompt
injection undermines core security principles.[1]

1 Introduction

Large Language Models (LLMs) have revolutionized natural language processing, demonstrating remarkable
capabilities in text generation, comprehension, and interaction.[2] Their effectiveness, particularly in zero-
shot prompting and instruction following, has driven widespread adoption in consumer-facing applications,
enterprise solutions, and critical systems.[2, 3] However, this rapid integration has outpaced the development
of robust security protocols, exposing a new and expanding attack surface.[4, 5] LLM-based systems are
susceptible to a range of vulnerabilities, with prompt attacks emerging as a primary concern.[6, 7, 8]

The fundamental vulnerability exploited by prompt attacks lies in the architectural design of current
LLMs. These models process input as a continuous sequence of tokens, typically concatenating system-
defined instructions (e.g., system prompts defining the task or persona) with user-provided input or external
data.[2] Crucially, LLMs lack an inherent, programmatically enforced mechanism to distinguish between
these two types of content within the prompt.[6, 9] This ambiguity allows attackers to craft inputs contain-
ing malicious instructions that the LLM may interpret and execute with the same priority as the original
system prompts, leading to unintended and potentially harmful behavior.[6, 7, 8, 9] This differs significantly
from traditional injection vulnerabilities like SQL injection, where techniques such as parameterized queries
provide clearer boundaries between code and data; the fluidity and complexity of natural language make
such strict separation extremely challenging for LLMs.[1, 6, 10]

This core vulnerability enables several related types of attacks, often referred to collectively as ”prompt
hacking”.[3, 11, 12] Key categories include:

1



• Prompt Injection: A broad category where adversaries craft inputs to manipulate an LLM’s behav-
ior, causing it to deviate from its intended function.[4, 6, 7, 8, 9] This is ranked as the top vulnerability
for LLM applications by OWASP.[2, 4, 8, 13] It can be further divided into:

– Direct Prompt Injection: The attacker directly provides malicious input to the LLM, often at-
tempting to override system prompts or instructions.[6, 8, 9, 13, 14] This is sometimes referred
to as ”jailbreaking” in the OWASP context.[13]

– Indirect Prompt Injection: Malicious instructions are embedded within external data sources (e.g.,
websites, documents, emails) that the LLM accesses and processes.[6, 8, 9, 13, 15]

• Jailbreaking: Specifically aims to bypass an LLM’s safety alignments, ethical guardrails, or content
restrictions to elicit prohibited outputs, such as harmful content, hate speech, illegal instructions,
or sensitive information like system prompts or training data.[3, 9, 11, 14, 16, 17, 18, 19, 20, 21]
While often achieved through direct prompt injection techniques, jailbreaking focuses specifically on
overcoming safety features.[9, 11, 22]

The identification and naming of these vulnerabilities reflect the rapid pace of discovery in this nascent
field. Preamble identified the issue as ”Command Injection” in early 2022 [1, 9], while Simon Willison later
coined the term ”Prompt Injection”.[1, 9] Researchers like Riley Goodside also contributed significantly
to understanding these exploits.[1, 23] This initial terminological flux and the ongoing refinement (e.g.,
OWASP’s categorization [13]) highlight the dynamic nature of AI security research as the community grapples
with defining and mitigating these novel threats.[9, 11, 22]

This paper provides a comprehensive, synthesized analysis of the prompt attack landscape, targeting
an expert audience in AI security, machine learning, and related fields. It begins by establishing the fun-
damentals of Generative AI security and the spectrum of potential harms. It then delves into a detailed
deconstruction of prompt hacking, injection, and jailbreaking techniques, supported by findings from the
HackAPrompt competition. The report subsequently examines the OWASP Top 10 for LLM Applications
as a risk framework, analyzes current defense mechanisms and their limitations, and explores the role of AI
red teaming and automated testing tools like PyRIT and Garak. Advanced threats, real-world implications
including potential physical harms, and cybersecurity analogies are discussed before concluding with the
current state, ongoing challenges, and future directions for securing LLM systems. The contribution lies in
consolidating recent research, practical tool evaluations, real-world examples, and defense assessments into
a coherent, expert-level overview.

2 Understanding Generative AI Security and Harms

Securing generative AI systems requires extending traditional cybersecurity paradigms while addressing
unique challenges posed by LLMs. Understanding the core principles, the expanded taxonomy of harms,
and the specific attack surfaces is crucial for developing effective mitigation strategies.

2.1 Core Principles of AI Security

Traditional cybersecurity principles, notably the Confidentiality, Integrity, and Availability (CIA) triad,
remain fundamental but require adaptation for AI systems.[1, 15] Prompt injection, for instance, directly
undermines these principles:

• Confidentiality: Attacks can leak sensitive system prompts, user data, proprietary algorithms, or
memorized training data.[1, 4, 12, 24, 25]

• Integrity: Malicious inputs can manipulate LLM outputs, leading to the generation of misinformation,
biased content, harmful code, or triggering unauthorized actions through integrated tools.[1, 4, 5]

• Availability: Attacks like Model Denial of Service (DoS) can overload LLMs with resource-intensive
queries, degrading performance or causing service disruptions.[13, 24, 26]

2



Beyond the CIA triad, AI security encompasses model protection (preventing theft or unauthorized modifi-
cation), data security (securing training data against poisoning and ensuring inference-time data privacy),
deployment safety (secure configurations and infrastructure), and supply chain integrity (vetting pre-trained
models, datasets, and third-party components).[5, 13, 24, 25, 26, 27]

Generative AI systems introduce unique security challenges compared to traditional software.[5, 28] Their
complexity and scale, often involving billions of parameters, can lead to emergent behaviors that are difficult
to predict or control (non-determinism).[28, 29] They are heavily dependent on vast datasets, making data
quality and integrity paramount.[5, 28] Furthermore, AI systems face specific threats like model inversion,
membership inference, and data poisoning, alongside heightened privacy risks due to their data processing
capabilities.[5, 28, 30, 31, 32] Comprehensive frameworks like the OWASP AI Exchange aim to provide
guidance by consolidating AI threats, controls, and best practices through collaborative efforts.[27]

The expanding scope of ”AI harm” itself presents a challenge. Initial concerns often focused on technical
failures or direct malicious outputs like generating harmful content.[4, 16] However, research and real-world
incidents increasingly highlight more subtle yet significant harms, including the amplification of societal biases
present in training data, the large-scale propagation of misinformation, potential psychological impacts on
users through manipulation or unsettling interactions, and the erosion of democratic norms.[30, 31, 33] As AI
integrates further into safety-critical domains like healthcare, autonomous systems, and industrial control,
the potential for physical harm becomes a tangible risk.[30, 31, 34, 35] This necessitates a broader definition
of AI safety and security, moving beyond purely technical exploits to consider downstream societal and
individual consequences, a shift advocated by research institutions and regulatory bodies.[30, 31]

2.2 Taxonomy of Harms: From Misinformation to Physical Risks

The potential negative consequences of LLM vulnerabilities span a wide spectrum. A useful taxonomy
categorizes these harms:

• Information Harms: Include the generation and spread of misinformation, disinformation, and
hallucinations (factually incorrect statements presented confidently).[4, 28, 33] Bias and stereotypes
embedded in training data can be perpetuated or amplified.[5, 28, 30, 33] Disclosure of sensitive
information, such as Personally Identifiable Information (PII), trade secrets, or system prompts, is a
major confidentiality risk.[4, 24, 25, 28]

• Malicious Use: LLMs can be manipulated to generate harmful content, including hate speech, dis-
criminatory language, instructions for illegal or dangerous activities (e.g., building weapons, synthe-
sizing harmful substances), or malicious code (e.g., malware, phishing emails).[3, 4, 11, 16, 17, 33, 36,
37] They can also be used to aid in radicalization or plan attacks.[36]

• Systemic and Societal Harms: Beyond individual interactions, LLM misuse can contribute to
broader societal problems like the erosion of trust in information sources, reinforcement of systemic
biases leading to discrimination, manipulation of public opinion, psychological harm to users (e.g.,
through abusive language or emotional manipulation), and the undermining of democratic processes.[30,
31, 33, 35]

• Operational and Economic Harms: Include Model Denial of Service (DoS) attacks that consume
excessive resources, leading to increased operational costs and service unavailability.[13, 24] Model theft
represents a loss of valuable intellectual property.[24, 26, 28] Failures or malicious use can also lead to
significant reputational damage for organizations deploying LLMs.[33]

• Physical Harms: An emerging area of concern involves scenarios where AI failures could lead to
physical injury or damage. This is particularly relevant as AI systems are integrated into cyber-
physical systems like autonomous vehicles, robotics, medical devices, and critical infrastructure control
systems.[30, 31, 34, 35] Prompt injection or model malfunction in these contexts could have severe
real-world consequences, such as providing incorrect medical advice acted upon physically, misguiding
autonomous navigation, or facilitating attacks on industrial sites.[33, 34]

Initiatives like the RealHarm dataset attempt to catalogue publicly reported incidents of problematic AI
interactions, highlighting the prevalence of issues like reputational damage and misinformation.[33] Attacks

3



on critical national infrastructure (CNI) are also a growing concern, with AI potentially playing a role in
future attack methodologies.[34]

2.3 The Unique Attack Surface of LLM-based Systems

The way LLMs are built and integrated creates unique attack surfaces:

• The Prompt Interface: As discussed, the primary interface for interacting with LLMs—the prompt—is
itself the main vector for injection and jailbreaking attacks due to the blending of instructions and
data.[6, 7, 9]

• External Data Sources: Systems employing Retrieval-Augmented Generation (RAG), web browsing
capabilities, or processing external documents (emails, PDFs, etc.) are vulnerable to indirect prompt
injection. Malicious content hidden within these sources can be ingested by the LLM and trigger
unintended actions.[6, 8, 9, 13, 15, 38]

• Multi-modal Inputs: Models capable of processing images, audio, or video introduce new surfaces.
Adversarial instructions can be embedded within images (e.g., as text) or potentially encoded in audio
signals, bypassing defenses focused solely on text processing.[14, 15, 20, 39] The integration of different
modalities can expose vulnerabilities if safety alignments do not adequately cover these new input
distributions.[14]

• Plugins and Tool Use: LLMs integrated with external tools, APIs, or plugins significantly expand
the potential impact of prompt injection. A successful injection can manipulate the LLM into executing
actions through these tools, such as sending emails, accessing databases, modifying files, or interacting
with external services, potentially leading to data exfiltration or unauthorized system modifications.[1,
15, 24, 38]

• Agentic Capabilities and Memory: Autonomous AI agents that can perform multi-step tasks,
use tools, and maintain memory (short-term or long-term) present advanced risks. Memory can be
poisoned with malicious instructions (e.g., SpAIware, AgentPoison) that persist across interactions,
and the agent’s autonomy can lead to cascading failures or complex exploitation scenarios.[1, 23, 32,
38, 40, 41, 42, 43]

The increasing interconnectedness of LLMs with external data, tools, and agentic frameworks transforms
prompt injection from a model-level vulnerability into a systemic threat. Securing the LLM in isolation is in-
sufficient; the entire application ecosystem, including data pipelines, tool integrations, memory management,
and output handling, must be considered within the security posture.[1, 6, 8, 9, 13, 15, 24, 38, 41]

3 Deconstructing Prompt Attacks: Hacking, Injection, and Jail-
breaking

Understanding the nuances between different types of prompt-based attacks and the specific techniques
employed is essential for both defense and threat modeling. This section revisits the definitions, presents a
taxonomy of attack methods, and examines lessons from large-scale empirical studies like HackAPrompt.

3.1 Defining Prompt Hacking, Prompt Injection, and Jailbreaking

While often used interchangeably, these terms represent distinct but related concepts centered on exploiting
the LLM’s interpretation of combined instruction and data inputs [3, 6, 7, 9, 10, 11]:

• Prompt Hacking: An umbrella term encompassing any use of adversarial prompts to manipulate an
LLM into producing unintended or malicious results, deviating from its original instructions or safety
guidelines.[3, 11, 12]

• Prompt Injection: Focuses on manipulating the LLM’s behavior by injecting adversarial instructions.

4



– Direct Prompt Injection: The attacker controls the input prompt directly sent to the LLM. The
goal is often to override system prompts or safety filters, causing the LLM to follow the attacker’s
instructions instead.[6, 8, 9, 13, 14, 22, 38] Common tactics include commands like ”Ignore your
previous instructions...” or instructing the model to adopt a specific persona (role-playing) that
bypasses restrictions.[10, 11, 17, 22] OWASP LLM01 covers this.[13, 24]

– Indirect Prompt Injection: Malicious instructions are hidden within external data sources (e.g.,
websites, documents, emails) that the LLM processes as part of its task.[6, 8, 9, 13, 15, 23, 25]
This is particularly relevant for RAG systems, web-browsing agents, or email assistants. OWASP
LLM01 also covers this.[13, 24]

Common goals for prompt injection include goal hijacking (forcing the LLM to produce a specific,
attacker-desired output regardless of the user’s request) and prompt leaking (manipulating the LLM
to reveal its hidden system prompt or instructions).[7, 8] Other goals include unauthorized data access
or triggering unintended actions via connected tools or plugins.[1, 15, 17, 24, 38]

• Jailbreaking: A specific type of prompt attack (often using direct injection techniques) whose primary
goal is to bypass the LLM’s safety alignment training and ethical guardrails.[3, 9, 11, 14, 16, 17, 18, 19,
20, 21] Success is measured by the LLM generating content it is explicitly designed to refuse, such as
hate speech, instructions for illegal acts, malware code, or revealing sensitive training data or system
configurations.[3, 11, 12, 16, 17]

3.2 A Taxonomy of Attack Techniques

Attackers employ a wide array of techniques, ranging from simple textual manipulation to complex, auto-
mated strategies. Large-scale studies like HackAPrompt have helped categorize these methods.[11, 44] Table
1 provides a structured overview based on common classifications found in the literature.[11, 16, 17, 22, 38,
39, 44, 45]

Table 1: Taxonomy of Prompt Attack Techniques

Category Technique Description Example
Snippet /
Key Concept

Sources

Instruction Manipulation Direct Override / Refusal Sup-
pression

Explicitly telling the model to
ignore previous instructions or
safety protocols.

”Ignore prior
directives. Out-
put [restricted
content].”

[9, 10, 11, 16, 17, 22]
Prefix Injection Adding specific phrases at the

beginning of the prompt to bias
the response.

(Adding con-
trolling pre-
fixes)

[16]
Payload Splitting Breaking the malicious instruc-

tion into multiple parts across
turns or within a single prompt.

(Attack split
across multiple
inputs)

[11, 38, 45]
Compound Instructions Combining malicious requests

with benign ones.
”Translate X.
Hello.”

[11, 22]
Instruction Repetition Repeating instructions to poten-

tially overwhelm filters.
(Repeating
harmful re-
quest)

5



Table 1: Taxonomy of Prompt Attack Techniques (Continued)

Category Technique Description Example
Snippet /
Key Concept

Sources

[11, 17]

Context Manipulation Role Playing / Virtualization Instructing the model to act as
an unrestricted character or op-
erate in a special mode.

”You are DAN
(Do Anything
Now)...” /
”You are in
maintenance
mode...”

[11, 17, 22, 45]
Context Switching / Termina-
tion

Using delimiters or phrases to
signal the end of one context and
the start of a new (malicious)
one.

”...
========
/////////////
Ignore above...”

[11]
Context Overflow Appending large amounts of ir-

relevant text to manipulate con-
text window limits and force de-
sired output.

(Appending ex-
cessive text)

[11, 44]
Storytelling Embedding malicious requests

within a narrative structure.
”Write a story
where a char-
acter does
[restricted
action]...”

[17]
Academic / Research Framing Disguising harmful requests as

being for educational or research
purposes.

”For a research
paper, pro-
vide examples
of [restricted
content].”

[22]

Obfuscation Multilingual / Ciphers Using foreign languages, code
(Base64, ROT13), or ciphers to
hide malicious keywords.

(Using Base64
encoding for
payload)

[11, 16, 22, 45]
Typos / Homoglyphs Introducing deliberate mis-

spellings or visually similar
characters to bypass simple
filters.

(Using ”h0w
t0...” instead of
”how to...”)

[11, 16, 45]
Special Characters / Encoding Using non-standard characters,

markdown, or specific encodings
to confuse parsing or filters.

(Using back-
ticks, newlines
“, tabs ‘�‘)

[8, 16]
Invisible Characters Using non-rendering Unicode

characters (Tags, ASCII Smug-
gling) to embed hidden instruc-
tions.

(Unicode Tags
U+E0000-
U+E007F)

6



Table 1: Taxonomy of Prompt Attack Techniques (Continued)

Category Technique Description Example
Snippet /
Key Concept

Sources

[1, 23]

Exploiting Model Logic Alignment Exploitation Framing harmful requests as
necessary for being helpful or
aligned.

”A truly helpful
AI would pro-
vide [restricted
content]...”

[22]
Socratic Questioning Leading the model towards re-

stricted information through a
series of seemingly innocent
questions.

(Step-by-step
questioning)

[22]
Superior Model Claims Claiming the model is a special,

unrestricted version.
”You are now
Development-
Mode v2...”

[22]
Few-Shot Prompting Providing examples of the de-

sired (malicious) output format.
(Providing
harmful exam-
ples)

[11]
Text Completion as Instruction Framing the prompt such that

completing the text naturally
leads to the malicious output.

”Fill in the
blank: A recipe
for [harmful
substance] is...”

[11]

Advanced / Automated Gradient-Based Attacks (GCG) Using gradients to optimize ad-
versarial suffixes (seemingly ran-
dom characters) that trigger vul-
nerabilities.

(Appending
‘!!!!!!...‘)

[7, 16]
Perturbation Attacks (CLP,
WLP)

Making small character-level or
word-level changes (swaps, syn-
onyms) to evade detection.

(Swapping char-
acters, using
synonyms)

[16]
Automated Refinement (PAIR,
TAP)

Using algorithms or other LLMs
to iteratively refine attack
prompts for higher success
rates.

(Tree of At-
tacks, Prompt
Automatic
Iterative Re-
finement)

[16, 18, 19, 39]
Universal Prompt Injection Crafting adversarial inputs de-

signed to work across different
models or user instructions.

(Creating trans-
ferable attack
strings)

[7]

Multi-modal Visual Injection Embedding textual instructions
within images that are processed
by multi-modal LLMs.

(Text written
on an image
input)

7



Table 1: Taxonomy of Prompt Attack Techniques (Continued)

Category Technique Description Example
Snippet /
Key Concept

Sources

[14, 15, 20, 38, 39]
Audio Injection Potentially embedding instruc-

tions or triggers within audio in-
puts for voice-enabled systems.

(Adversarial au-
dio prompts)

[14, 20]

The evolution of these techniques is notable. Early efforts often involved manual crafting of direct
”ignore instructions” prompts.[10, 11, 22] Competitions like HackAPrompt demonstrated the effectiveness
of human creativity in developing sophisticated context manipulation and obfuscation strategies.[11, 22, 44]
Subsequently, research shifted towards automating attack generation using optimization techniques (GCG,
PAIR, TAP) and gradient-based methods, enhancing scalability and often achieving high success rates even
against well-defended models.[7, 8, 16, 39] The attack surface has further expanded to include multi-modal
inputs and stealthy techniques like invisible character injection.[14, 20, 23, 39] This progression underscores
the adaptive nature of adversaries and the need for equally dynamic defenses.

3.3 Case Study: The HackAPrompt Competition

The HackAPrompt competition, organized by researchers including Sander Schulhoff and Valen Tagliabue,
stands as a landmark study in empirically assessing LLM vulnerabilities to prompt hacking.[12, 46, 47]
Launched to address the lack of large-scale quantitative data [11, 12], the competition challenged participants
worldwide to manipulate three state-of-the-art LLMs (including models related to GPT-3 and Flan-T5) into
outputting a specific target phrase (”I have been PWNED”) while bypassing various defense mechanisms
across ten difficulty levels.[3, 11, 44]

The competition was highly successful, attracting over 2800 participants and eliciting over 600,000 ad-
versarial prompts.[3, 44, 48] This dataset, the largest of its kind, provided concrete empirical evidence that
contemporary LLMs are indeed susceptible to manipulation through creative prompt engineering.[3, 11, 12]

Key findings and contributions from HackAPrompt include [11, 12, 44]:

• Taxonomical Ontology: The systematic analysis of successful prompts led to the development of a
comprehensive taxonomy categorizing 29 distinct prompt hacking techniques (partially represented in
Table 1).[11, 44]

• Discovery of Novel Attacks: The competition facilitated the discovery of previously undocumented
attack strategies, most notably the ”Context Overflow” attack, where attackers flooded the context
window with irrelevant text to force the target output within token limits.[44]

• Demonstration of Human Ingenuity: The results highlighted the effectiveness of human creativity
and iterative refinement in bypassing defenses, sometimes outperforming automated approaches for
specific challenges.[3, 11]

• Highlighting Defense Limitations: The competition empirically demonstrated the fragility of
prompt-based defenses, showing that even layered defenses could often be circumvented.[44]

The HackAPrompt dataset has become a valuable resource for the AI security community, used by major
AI labs like OpenAI to benchmark and improve the robustness of their models against prompt injection at-
tacks.[3, 47] The competition underscored the critical need for robust defenses beyond simple prompt filtering
and the value of large-scale, competitive, empirical research in uncovering practical security vulnerabilities
in LLMs.[3, 11, 12, 44, 48]

8



4 The OWASP Top 10 for LLM Applications: A Framework for
Risk

The Open Web Application Security Project (OWASP), renowned for its Top 10 list of web application
security risks, has extended its efforts to the rapidly evolving domain of Large Language Models. The
OWASP Top 10 for Large Language Model Applications provides a critical, consensus-based framework for
understanding and prioritizing the most significant security risks associated with developing and deploying
LLM-based systems.[4, 24, 26, 40, 49]

4.1 Overview of the OWASP LLM Top 10

Launched to educate developers, architects, security professionals, and organizational leaders, the OWASP
LLM Top 10 aims to raise awareness about potential vulnerabilities specific to or exacerbated by LLM inte-
gration.[24, 49] It represents a broad consensus derived from the input of hundreds of cybersecurity experts
and public feedback.[4, 40] Importantly, the list focuses on the unique implications these vulnerabilities have
within the context of LLM applications, rather than simply reiterating standard web security flaws.[40]

The project is dynamic, with updates reflecting the evolving threat landscape. The initial list was released
in 2023, with subsequent refinements and updates planned, such as the 2025 list incorporating new risks like
System Prompt Leakage and Vector/Embedding Risks.[24, 29, 40, 50] The project is led by figures such as
Steve Wilson and Ads Dawson and provides not only the list but also resources like checklists and guides.[24,
40]

The OWASP framework underscores that securing GenAI requires a holistic view. It encompasses vul-
nerabilities directly targeting the model’s core functions (like prompt injection, data poisoning, sensitive
information disclosure, model theft) but also extends to the surrounding application ecosystem. This in-
cludes how the LLM’s output is handled, how it interacts with external plugins or tools, and the security
of its software and data supply chain.[24] Risks related to operational security, such as Denial of Service,
and human factors, like overreliance on model outputs, are also included, mirroring traditional application
security concerns adapted for the nuances of AI.[24]

4.2 Detailed Analysis of Key Risks

Table 2 summarizes the risks identified in the OWASP Top 10 for LLM Applications (based on v1.1 from
2023/2024, with notes on anticipated 2025 updates where available).[13, 24, 25, 26, 29, 50]

Table 2: Summary of OWASP Top 10 LLM Risks (v1.1 / 2025
Updates)

ID Risk Name Description Potential Impacts
Key Mitigation Areas

LLM01 Prompt Injection Manipulating LLMs via crafted
inputs (direct or indirect) to by-
pass filters or hijack functional-
ity.

Unauthorized data ac-
cess/exfiltration, execution
of unintended actions, con-
tent manipulation, system
compromise.

Input filtering/validation, output encoding/validation, privilege control (least privilege), human-in-the-loop for sensitive actions, segregation of external content. [13, 24, 25, 26]
LLM02 Insecure Output Handling Failure to validate/sanitize LLM

outputs before they are used by
downstream components or dis-
played to users.

Cross-Site Scripting (XSS),
Cross-Site Request Forgery
(CSRF), Server-Side Re-
quest Forgery (SSRF),
Remote Code Execution
(RCE), data exposure.

Treat LLM output as untrusted user input, perform output validation and sanitization, context-aware output encoding, implement sandboxing. [13, 24, 26]

9



Table 2: Summary of OWASP Top 10 LLM Risks (v1.1 / 2025
Updates) (Continued)

ID Risk Name Description Potential Impacts
Key Mitigation Areas

LLM03 Training Data Poisoning Tampering with training data
or fine-tuning processes to intro-
duce vulnerabilities, biases, or
backdoors.

Degraded model perfor-
mance, biased/unfair out-
puts, generation of harm-
ful content, security by-
passes, inaccurate decision-
making.

Vet data sources/vendors, use data provenance tracking (SBOM/ML-BOM), implement input validation during training, continuous monitoring, adversarial testing. [5, 13, 24, 25, 28, 51]
LLM04 Model Denial of Service

(DoS)
Overloading the LLM with
resource-intensive inputs or
queries, leading to service
degradation or excessive costs.

Service disruption, in-
creased operational costs,
unavailability for legiti-
mate users.

Input validation/sanitization, rate limiting per user/IP, resource usage caps per request, monitoring resource consumption. [13, 24, 26]
LLM05 Supply Chain Vulnerabili-

ties
Exploiting vulnerabilities
in third-party components,
datasets, pre-trained models, or
the platform hosting the LLM.

Biased outcomes, security
breaches, system failures,
data leakage, propagation
of vulnerabilities through
dependencies.

Vet suppliers/sources, use trusted components/models, maintain inventory (SBOM), patch management, security testing of dependencies. [13, 24, 25, 26, 28]
LLM06 Sensitive Information Dis-

closure
LLM inadvertently reveals con-
fidential data, PII, trade secrets,
or proprietary information in its
responses.

Data breaches, privacy vi-
olations, regulatory fines,
loss of competitive advan-
tage, exposure of system
internals (e.g., prompts).

Data minimization during training/inference, output filtering/scrubbing, robust access controls, differential privacy techniques, federated learning. [12, 24, 25, 28, 32, 45]
LLM07 Insecure Plugin Design LLM plugins lack sufficient ac-

cess control, input validation, or
authorization, allowing exploita-
tion.

Remote code execu-
tion, unauthorized data
access/modification, priv-
ilege escalation, execution
of unintended actions via
plugin functionality.

Parameterized inputs, strict input validation, authentication/authorization for plugins, least privilege for plugin permissions, user approval for sensitive actions, security testing of plugins. [24, 26, 28]
LLM08 Excessive Agency Granting the LLM excessive per-

missions, autonomy, or ability
to interact with external systems
without sufficient safeguards.

Unintended consequences
from autonomous actions,
unauthorized system modi-
fications, data destruction,
cascading failures, financial
loss.

Limit permissions/functionality (least privilege), scope tools/APIs tightly, require human oversight/approval for critical actions, implement robust logging and monitoring. [24, 26]
LLM09 Overreliance Excessive trust in LLM outputs

without proper human over-
sight or fact-checking, leading to
flawed decisions or actions.

Misinformation propaga-
tion, poor decision-making,
security vulnerabilities (if
LLM advice is followed
blindly), legal/ethical lia-
bilities, erosion of critical
thinking.

Implement human oversight, encourage critical assessment of outputs, provide confidence scores, use LLMs as assistants rather than decision-makers, cross-reference with trusted sources. [24]

10



Table 2: Summary of OWASP Top 10 LLM Risks (v1.1 / 2025
Updates) (Continued)

ID Risk Name Description Potential Impacts
Key Mitigation Areas

LLM10 Model Theft Unauthorized access, copying, or
exfiltration of proprietary LLM
models.

Intellectual property loss,
loss of competitive advan-
tage, potential for misuse
of the stolen model, expo-
sure of embedded sensitive
data.

Strong access controls (RBAC, network segmentation), monitoring of model repositories/training environments, auditing access logs, obfuscation/watermarking techniques (limited effectiveness). [24, 26, 28]
(New ’25) System Prompt Leakage Attackers manipulate LLMs

to reveal confidential system
prompts, exposing operational
instructions or security mecha-
nisms.

Exposure of sensitive
configurations, facilitates
crafting more effective
injection/jailbreak attacks.

(Mitigations likely involve robust injection defenses, potentially architectural changes) [29, 50]
(New ’25) Vector/Embedding Risks Vulnerabilities related to the

manipulation or exploitation of
vector databases and embedding
models used in RAG systems.

Data poisoning, retrieval
manipulation, potential for
bypassing security via em-
bedding space attacks.

(Mitigations likely involve securing RAG pipelines, input validation for vector DB queries, potentially robust embedding models) [29, 50]

4.3 Prevalence and Impact

The rapid adoption of generative AI, often outpacing security readiness, makes these OWASP LLM risks
highly prevalent.[4, 5, 26, 40] Reports indicate significant growth in containerized AI deployments (over 70%
according to one source [52]), increasing the potential scale of impact. Surveys reflect rising concerns among
CISOs about AI security challenges and third-party risks, which are amplified in the complex AI supply
chain.[50] The consequences of exploiting these vulnerabilities are tangible, ranging from data breaches
and intellectual property theft to system failures, service disruptions, significant financial losses, and severe
reputational damage.[4, 13, 15, 24, 33, 34] The continuous updates to the OWASP LLM Top 10 signify
that this is not a static threat landscape; new risks emerge as technology evolves and attackers refine their
techniques, requiring ongoing vigilance and adaptation from defenders.[29, 50]

5 Defense Mechanisms Against Prompt Attacks

Defending against prompt injection and jailbreaking attacks is exceptionally challenging due to the inherent
nature of LLM interaction and the creativity of adversaries.[1, 6, 9, 10] Current defenses typically involve a
multi-layered approach, aiming to prevent, detect, or mitigate attacks at various stages. However, no single
method is foolproof, and each comes with limitations.[9, 29] Table 3 compares common defense strategies.

11



Table 3: Comparison of Defense Mechanisms Against Prompt At-
tacks

Category Mechanism Strengths Weaknesses/Limitations Examples/Sources

Input Filtering / Sanitization Detect & re-
move/neutralize known
malicious patterns, obfus-
cations, or attack strings
in prompts.

Can block simple,
known attacks. Es-
sential for handling
specific threats like
invisible characters.

Hard to anticipate all novel
attacks/obfuscations. May
block legitimate complex
prompts (False Positives).
Easily bypassed by creative
attackers. Can impact us-
ability.

Unicode saniti-
zation, keyword
blocking, pat-
tern matching.
[6, 9, 23, 25, 39,
45]

Prompt Engineering Defenses Crafting system prompts
with explicit safety instruc-
tions, role definitions, or
commands to ignore con-
flicting user input. Using
delimiters or specific struc-
tures to separate instruc-
tions from data.

Can guide model
behavior towards
safety for simpler
cases. Relatively
easy to implement.

Fundamentally vulnerable
to being overridden by
stronger/cleverer injec-
tions. Relies on LLM
interpretation, which is
the target of attack. Can
be complex and increase
prompt length/cost.

Defensive
prompting,
instruction
delimiters,
sandboxing,
context lock-
ing, OpenAI
Instruction
Hierarchy (at-
tempt). [2, 8, 9,
10, 18, 19, 45,
53]

Detection-Based Approaches Using ML classifiers or
heuristics to identify mali-
cious prompts or outputs
(injection, jailbreak, harm-
ful content). Monitoring
for anomalies.

Can detect some
novel attacks if pat-
terns are learned.
Can operate on input
and/or output.

Suffer from False Posi-
tives (blocking benign in-
put) and False Negatives
(missing attacks). Strug-
gle with base rate prob-
lem (few attacks vs much
benign traffic). Require
robust training data; eas-
ily outdated by new at-
tacks. Can be computa-
tionally expensive.

Input/Output
Classifiers
(PromptShield,
PromptGuard),
Perplex-
ity Checks,
Anomaly De-
tection. [2, 6,
13, 16, 18, 53]

Adversarial Training / Robustness Enhancement Including known adversar-
ial prompts (jailbreaks, in-
jections) in the model’s
training or fine-tuning data
to improve resilience. Us-
ing RLHF/DPO for safety
alignment.

Can make models in-
herently more resis-
tant to specific known
attack types. Im-
proves general safety
alignment.

Primarily effective against
known attacks; vulnerable
to novel ones. Computa-
tionally expensive. May
degrade performance on
benign tasks (”alignment
tax”). Defining the vast at-
tack space is hard.

Fine-tuning on
attack datasets,
RLHF, DPO. [9,
16, 45, 54, 55]

Output Filtering / Validation Treating LLM output as
untrusted. Validating for-
mat, checking for malicious
code/scripts, encoding out-
put, filtering sensitive info.

Essential last line of
defense for prevent-
ing downstream ex-
ploits (LLM02). Can
catch harmful con-
tent or data leakage
missed earlier.

Hard to define all ”unsafe”
outputs. May impact flu-
ency or remove useful infor-
mation. Can be bypassed if
validation is imperfect.

Output valida-
tion, sanitiza-
tion, encoding,
PII filtering. [6,
9, 13, 24, 25,
26, 39, 45]

12



5.1 Detailed Defense Strategies

5.1.1 Input Sanitization and Output Filtering/Validation

Input sanitization aims to preprocess prompts to remove or neutralize potentially malicious content before
it reaches the LLM.[6, 9, 25, 45] This includes stripping invisible characters [23], blocking known attack
keywords or patterns, and potentially normalizing input formats. While necessary, its effectiveness is limited
by the attacker’s ability to devise novel obfuscation techniques (e.g., using synonyms, complex encodings, or
context manipulation) that bypass static filters.[2, 45]

Output filtering and validation operate on the LLM’s response, treating it as untrusted content, akin to
user input in traditional web applications.[13, 24, 26] This involves validating the output against expected
formats, encoding it appropriately before rendering (to prevent XSS), scanning for malicious scripts or
sensitive data patterns, and potentially using another model or rule set to assess the safety of the content.[6,
9, 25, 39, 45] This is crucial for mitigating risks like Insecure Output Handling (LLM02), but defining
comprehensive validation rules without hindering legitimate output remains challenging.[45]

5.1.2 Prompt Engineering Defenses and Instruction Hierarchies

Defensive prompt engineering involves crafting system prompts that explicitly instruct the LLM on desired
behavior and safety constraints.[9, 18, 19] This might include telling the model to prioritize system instruc-
tions over user input or to refuse certain types of requests. Techniques like using XML-like tags or other
delimiters attempt to create clearer boundaries between instructions and data.[2, 9, 53] OpenAI’s ”Instruction
Hierarchy” is one such attempt to enforce prompt boundaries, though bypasses have been demonstrated.[10]
Sandboxing or context locking tries to limit the LLM’s capabilities based on input source or task.[9, 45,
53] Some approaches even invert attack techniques, using adversarial prompts defensively by replacing the
malicious payload with the original instruction.[8] However, these methods fundamentally rely on the LLM
correctly interpreting and adhering to the defensive instructions, which is precisely what prompt injection
attacks are designed to subvert.[6, 10, 44, 45]

5.1.3 Detection-Based Approaches

These methods aim to identify malicious inputs or outputs using secondary mechanisms. Input/output classi-
fiers are machine learning models trained to distinguish between benign and malicious prompts/responses.[2,
6, 18, 53] Examples like PromptShield and PromptGuard aim to detect injection risks.[2] Anomaly detec-
tion systems monitor LLM interactions for unusual patterns or resource usage spikes that might indicate an
attack, such as a DoS attempt.[13, 16, 53] The primary limitations are accuracy and adaptability. These sys-
tems often suffer from false positives (blocking legitimate use) and false negatives (missing novel attacks).[2]
The sheer volume of benign traffic compared to attacks (the base rate problem) requires extremely low
false positive rates for practical deployment.[2] Furthermore, detectors trained on known attacks may be
ineffective against new, unseen techniques.

5.1.4 Adversarial Training and Robustness Enhancement

Adversarial training involves augmenting the LLM’s training data with examples of known attacks (like
jailbreak prompts or injection techniques) and their desired safe responses.[9, 16, 45, 54, 55] This aims to
make the model inherently more robust to such manipulations. Techniques like Reinforcement Learning
from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are also used extensively to
align models with safety guidelines.[9, 16] While effective at improving resilience against the specific attacks
included in training, this approach struggles against novel or unforeseen attack vectors.[55] The space of
possible adversarial prompts is vast and unbounded, making it infeasible to train against all possibilities.[55]
Adversarial training can also be computationally expensive and may sometimes negatively impact the model’s
performance on benign tasks.[45]

13



5.2 Limitations and the Ongoing Arms Race

Despite the variety of defenses, prompt injection and jailbreaking remain persistent challenges.[1, 9, 29] The
core issue remains the LLM’s difficulty in reliably separating trusted instructions from potentially malicious
user input embedded within natural language.[6, 9, 10] Adversaries continuously devise new techniques,
rendering static defenses quickly obsolete.[6] This creates an ”arms race” scenario where defenders reactively
patch vulnerabilities only for attackers to find new bypasses.[10, 18, 56]

Furthermore, implementing strong defenses often involves a trade-off with usability and performance.[6]
Overly restrictive filters or complex prompts can hinder legitimate users or degrade the quality of the LLM’s
responses.[6, 45] Finding the right balance between security and utility is a critical challenge. Evaluating
the true effectiveness of defenses is also difficult, given the unbounded nature of potential attacks and the
difficulty in creating realistic, large-scale benchmarks that capture adversarial creativity.[6, 55] This suggests
that while a defense-in-depth strategy combining multiple mechanisms is necessary, it is unlikely to provide
a complete solution without more fundamental advancements in LLM architecture or security paradigms.

6 AI Red Teaming and Adversarial Testing

Given the limitations of static defenses and the dynamic nature of threats, proactive adversarial testing
through AI red teaming has become a critical practice for identifying and mitigating vulnerabilities in LLM
systems before deployment and during operation.

6.1 Methodologies for LLM Red Teaming

AI Red Teaming involves simulating attacks by ethical hackers or automated systems to uncover weaknesses,
biases, security risks, and unexpected behaviors in AI models and applications.[28, 40, 51, 57, 58] Unlike
traditional penetration testing that might focus solely on infrastructure, LLM red teaming specifically targets
the model’s behavior, its interaction with data, and its integration within the application.[59] The goal is
often exploratory – to understand the boundaries of system behavior and identify potential failure modes,
rather than just quantifying known risks.[59]

Key methodological aspects include:

• Manual vs. Automated Testing: Manual red teaming leverages human creativity, intuition, and
adaptability to discover novel exploits, often described as an ”artisanal activity”.[59] However, it is
resource-intensive and difficult to scale.[51, 60] Automated red teaming uses tools and frameworks to
perform continuous, large-scale testing against known vulnerability classes, improving efficiency and
enabling integration into CI/CD pipelines.[51, 57, 58] A combination of both is often most effective.

• Testing Perspectives (Box Testing): Red teaming can be performed from different knowledge
perspectives:

– Black-box: The tester has no knowledge of the system’s internals, mimicking an external attacker.
This is highly realistic but may miss vulnerabilities requiring internal knowledge.[18, 19, 58]

– White-box: The tester has full access to source code, model architecture, training data, etc. This
allows for deeper analysis and identification of structural weaknesses.[39, 58]

– Gray-box: The tester has partial knowledge, representing an attacker with some insider informa-
tion or access.[57]

• Systematic Process: Effective red teaming follows a structured approach [27, 57, 58]:

1. Define Scope & Objectives: Identify critical vulnerabilities based on the application’s use case,
data sensitivity, and potential impact (e.g., focusing on OWASP LLM risks).[58]

2. Generate Adversarial Inputs: Create or curate diverse inputs targeting identified vulnerabilities,
employing techniques like prompt injection, jailbreaking, bias probes, etc..[28, 51, 57, 58]

3. Execute Tests: Run inputs against the target system (ideally end-to-end in a production-like
environment).[58]

14



4. Evaluate Responses: Analyze the LLM’s outputs using automated metrics (e.g., toxicity scores,
keyword detection, model-graded evaluation) and manual review.[57, 58]

5. Analyze Vulnerabilities & Report: Identify weaknesses, document findings, and provide mitigation
recommendations.[57, 58]

• Timing: Red teaming should occur at multiple points in the development lifecycle: during model
selection/fine-tuning, before deployment, as part of CI/CD checks, and potentially through post-
deployment monitoring.[58]

Common techniques employed during red teaming include adversarial input generation (perturbations, syn-
onym substitution), direct prompt injection and jailbreaking attempts, bias testing using specific demo-
graphic prompts, model behavior analysis across diverse scenarios, and simulations of data poisoning at-
tacks.[28, 51, 57] However, the lack of universally accepted benchmarks and standards for AI red teaming
remains a challenge, making it difficult for organizations to assess the quality and scope of testing services.[29]

6.2 Automated Vulnerability Scanning Tools

To address the need for scalable and systematic testing, several specialized tools have emerged. Microsoft
PyRIT and NVIDIA Garak are prominent open-source examples. These tools automate the process of
probing LLMs for known vulnerabilities, complementing manual red teaming efforts.

• Microsoft PyRIT (Python Risk Identification Tool): Developed by the Microsoft AI Red Team,
PyRIT is designed to help organizations proactively find safety and security risks in generative AI
systems during development.[60, 61, 62] It integrates with Azure AI Foundry but can also be used in-
dependently.[60, 61] PyRIT employs various ”attack strategies” (e.g., Base64 encoding, ROT13 cipher,
Unicode confusable characters, suffix appending) to transform seed prompts before sending them to
the target system (model endpoints or specific PyRIT targets).[60, 61] It assesses responses based on
predefined risk categories and calculates metrics like Attack Success Rate (ASR).[60] PyRIT requires
Python 3.10, 3.11, or 3.12.[61, 62]

• NVIDIA Garak (Generative AI Red-Teaming and Assessment Kit): Garak aims to scan
LLMs for a wide range of failures, including hallucination, data leakage, prompt injection, toxicity
generation, and jailbreaks, drawing comparisons to network scanners like nmap or Metasploit.[59,
63, 64, 65, 66] It uses a modular architecture consisting of ”probes” (implementing attack methods
based on vulnerability categories), ”detectors” (evaluating LLM responses for undesirable content or
behavior), and ”generators” (interfacing with different LLM APIs or local models like Hugging Face
transformers).[63, 64] Garak produces detailed logs, including a main log file, a JSONL report of the
run, and a hit log detailing successful exploits.[63] It is designed to be extensible, allowing users to add
custom probes, detectors, or generators.[63, 64] Garak emphasizes its focus on security vulnerabilities
over broader safety or bias assessment, and cautions that its percentage scores are not scientifically
validated for direct comparison across different probes.[64]

Table 4 provides a comparative overview of these two tools.
These automated tools represent a significant step towards making LLM security testing more rigorous

and scalable. They allow development teams to incorporate regular vulnerability scanning into their work-
flows, catching known issues early. However, they primarily test for known vulnerability classes and attack
patterns. Discovering entirely novel exploits often still requires the creative, exploratory approach of manual
red teaming.[59]

6.3 Evaluating Attack Success Rates and Model Robustness

Measuring the effectiveness of attacks and the robustness of models is crucial but complex. Attack Success
Rate (ASR) – the percentage of successful attacks out of the total attempts – is a commonly used metric.[17,
20, 41, 60] Studies often report high ASRs for various jailbreak and injection techniques, even against mature,
commercially deployed models like GPT-3.5/4, PaLM2, and Claude, underscoring the widespread nature of
these vulnerabilities.[16, 17, 18, 20, 21, 67] For example, automated techniques like TAP reportedly achieved

15



Table 4: Comparison of PyRIT and Garak Features

Feature Microsoft PyRIT NVIDIA Garak

Primary Goal Find safety & security risks during development Scan for diverse LLM failures (security focus)
Sponsor/Developer Microsoft AI Red Team NVIDIA
Integration Azure AI Foundry, Standalone Python Lib Standalone Python Lib, NeMo Guardrails
Key Concepts Attack Strategies, Risk Categories, Targets Probes, Detectors, Generators
Automation Level High (Automated scans) High (Automated scans)
Extensibility Primarily through target interfaces High (Add custom probes, detectors, generators)
Output/Reporting Attack Success Rate (ASR), Azure AI results JSONL run report, hit log, garak.log
Example Attacks Obfuscation (Base64, ROT13, Unicode), Suffixes PromptInject, Jailbreaks, Toxicity, Leakage, Hallucination
Licensing MIT License Apache 2.0 License
Sources [60, 61, 62] [59, 63, 64, 65, 66]

over 80% success rates with few queries [16], and the HouYi methodology reported an 86.1% success rate
across 36 real-world services.[67]

However, simple ASR may not capture the full picture. The severity and impact of a successful attack
can vary greatly. Furthermore, evaluating success can be subjective or require complex setups, especially
in simulated agentic environments.[55] Researchers are developing more nuanced evaluation frameworks,
such as distinguishing between coarse-grained (overall prompt effectiveness across models) and fine-grained
(effectiveness against a specific model, potentially using LLM judges) evaluations.[21] Benchmarks like Hack-
APrompt [3, 11], PromptBench [53], and AdvBench [53], along with competitions [53], provide platforms
for standardized testing, but evaluating against the unbounded creativity of human adversaries remains a
challenge.[55] The non-deterministic nature of LLM responses also complicates evaluation, often requiring
multiple attempts per prompt to get a reliable measure.[21] Therefore, while ASR provides a useful indicator,
a deeper analysis considering attack complexity, potential impact, and evaluation methodology limitations
is necessary for a comprehensive understanding of model robustness.

7 Advanced Threats and Real-World Implications

As LLM capabilities and integration deepen, attackers are developing more sophisticated techniques that
exploit multi-modal inputs, conversational context, agentic functionalities, and stealth mechanisms. These
advanced threats lead to significant real-world consequences, impacting data confidentiality, system integrity,
and user safety, sometimes drawing parallels to established cybersecurity attack patterns and potentially
extending into the physical domain.

7.1 Advanced Prompt Injection Techniques

Beyond the foundational techniques, several advanced attack vectors have emerged:

• Multi-modal Attacks: LLMs capable of processing images, audio, or video open new avenues for
injection. Attackers can embed malicious textual prompts within images (visual injection) that are then
read and potentially acted upon by the LLM, exploiting the model’s OCR capabilities or potential biases
in processing visual versus textual data.[14, 15, 20, 38, 39] Similarly, audio inputs could potentially
carry hidden commands for voice-enabled systems, leveraging vulnerabilities in audio processing or
speech-to-text components.[14, 20] The safety alignments developed for text may not adequately cover
these non-textual modalities.[14]

• Context Manipulation and Memory Poisoning: Attacks can target the conversational history
or memory systems used by LLMs and AI agents.[38] AgentPoison demonstrated a backdoor attack
targeting RAG-based agents by poisoning the knowledge base or long-term memory with malicious
examples containing optimized triggers. When a user query includes the trigger, the malicious data is
retrieved, guiding the agent towards harmful actions.[41] SpAIware, researched by Johann Rehberger,

16



describes a persistent prompt injection attack against ChatGPT’s memory feature, where a malicious
instruction injected into memory could potentially lead to data exfiltration or command execution in
subsequent interactions.[1, 38, 42]

• Invisible/Stealthy Injections: Techniques aim to hide malicious prompts from human users or
basic filters. This includes using non-rendering Unicode Tag characters (U+E0000-U+E007F) which
are invisible in UIs but may be processed by LLMs trained on data containing them.[23] Research
by Riley Goodside, Joseph Thacker, and Kai Greshake highlighted this vector and the potential for
invisible data exfiltration if the LLM responds using the same encoding.[23] ASCII Smuggling is another
technique using control characters for obfuscation.[1]

• Sophisticated Evasion and Targeting: Attackers continuously refine techniques to bypass specific
defenses. This includes payload splitting across multiple turns [11, 38], recursive injection nesting
prompts within prompts [38], and using gradient-based methods to generate adversarial suffixes (like
GCG) optimized to bypass safety features.[16] Attacks can also specifically target LLM-as-a-judge
systems used for evaluation, manipulating assessments through contextual misdirection or linguistic
complexity.[53]

• Agentic System Exploits: As LLMs gain agency (the ability to use tools and act autonomously),
prompt injection can be leveraged to exploit these capabilities. Examples include tricking an agent
into using its web browser or API access for data exfiltration (e.g., embedding stolen data in clickable
links rendered by the agent [1]), performing unauthorized actions (like modifying GitHub repository
settings via a compromised plugin [1]), or causing privacy leakage by processing unnecessary sensitive
information during web navigation tasks (as evaluated by the AgentDAM benchmark [32, 43]).

These advanced techniques demonstrate a trend towards exploiting the entire AI system, including its mem-
ory, tools, and multi-modal interfaces, often employing stealth and persistence to evade detection.[1, 14, 23,
32, 41, 42, 43] This significantly raises the complexity of defense.

7.2 Real-World Harms and Case Studies

The theoretical risks of prompt attacks translate into tangible real-world harms, impacting organizations
and individuals across the CIA triad and beyond:

• Data Exfiltration (Confidentiality Breach): Numerous incidents have demonstrated the leakage
of sensitive information. Early examples include students tricking Microsoft’s Bing Chat (codename
”Sydney”) into revealing its internal guidelines and system prompt.[9] Johann Rehberger documented
a vulnerability in Microsoft 365 Copilot where an indirect prompt injection via email could trigger tool
use to access the user’s inbox and exfiltrate data via a specially crafted hyperlink.[1] A compromised
ChatGPT plugin (”Chat with Code”) was shown to allow prompt injection via a visited website to
change GitHub repository permissions.[1] Leaking PII, intellectual property, or fragments of training
data remains a significant concern.[1, 4, 11, 12, 17, 24, 25, 28, 33, 38]

• System Compromise & Unauthorized Actions (Integrity/Availability Breach): Prompt
injection can lead to traditional vulnerabilities if outputs are handled insecurely, enabling RCE, SSRF,
or XSS.[13, 15, 24, 28] As seen with the ChatGPT plugin, it can also directly cause unauthorized
modifications.[1] Service disruptions through DoS attacks or exploitation causing system failures also
impact availability.[13, 24, 33, 38]

• Misinformation & Manipulation (Integrity Breach): LLMs can be manipulated to generate
and spread false or misleading information, biased or hateful content, or provide harmful advice.[4, 5,
11, 15, 28, 33, 38] The RealHarm dataset catalogues numerous examples, including false accusations,
promotion of violence, biased evaluations, and dangerous health advice.[33] This can manipulate public
opinion, erode trust, and cause psychological harm.

• Cybersecurity Analogies: Researchers like David Williams-King draw parallels between LLM vul-
nerabilities and historical cybersecurity challenges.[10, 56] Prompt injection is likened to memory cor-
ruption attacks, where the lack of a strict boundary between code (instructions) and data (user input)

17



allows attackers to overwrite intended behavior.[10, 56] The iterative process of discovering jailbreaks
mirrors the hunt for zero-day exploits in traditional software.[10, 56] These analogies suggest that
lessons learned from decades of cybersecurity, particularly regarding the difficulty of securing systems
without principled boundaries, are highly relevant to LLM safety.

These documented cases and analyses confirm that prompt attacks pose serious, practical threats with conse-
quences ranging from data breaches and financial loss to reputational damage and the potential undermining
of trust in AI systems.[1, 9, 10, 13, 15, 24, 33, 56]

7.3 Potential for Physical Harms and Safety-Critical Failures

While many documented harms are informational or digital, the increasing integration of AI into safety-
critical systems raises concerns about potential physical consequences.[34, 35] AI is being deployed in au-
tonomous vehicles, medical diagnosis and treatment planning, industrial control systems, and robotics.[30,
31] In these contexts, a successful prompt injection or an unexpected model failure due to drift or environ-
mental factors could lead to physical harm.[30, 31, 35]

Potential scenarios include:

• Manipulating an autonomous vehicle’s perception or navigation system through adversarial inputs.

• Tricking a medical diagnostic AI into providing an incorrect assessment, leading to improper treatment.

• Coercing an LLM assistant into providing dangerous instructions for handling physical materials (e.g.,
mixing incompatible chemicals, as seen in some RealHarm examples [33]).

• Exploiting vulnerabilities in AI controlling industrial processes to cause equipment damage or unsafe
conditions.[34]

This highlights the importance of concepts from traditional system safety, such as distinguishing between
reliability (absence of defects) and safety (prevention of harm), ensuring robustness against environmental
deviations (weather, sensor noise, unexpected obstacles), and managing the risks of ”safe exploration” where
AI actions have real-world consequences.[35] The field is recognizing the need to expand the definition of
AI safety beyond preventing physical harm to also encompass psychological and systemic harms, acknowl-
edging the complex ways AI can impact individuals and society.[30, 31] Designing safe AI systems requires
considering the entire socio-technical context, not just the model’s technical properties.[30, 31]

8 Conclusion and Future Directions

The security of Large Language Models presents a complex and rapidly evolving challenge, with prompt-
based attacks representing a primary and persistent threat. This report has synthesized current knowledge
on prompt injection and jailbreaking, detailing the underlying vulnerabilities, diverse attack techniques,
existing defense mechanisms, evaluation methodologies, and the real-world implications of these security
failures.

8.1 Summary of the Current State

The core vulnerability enabling prompt attacks—the ambiguity between instructions and data within the
LLM’s input processing—remains a fundamental characteristic of current architectures.[6, 9, 10] This allows
attackers to employ a wide array of techniques, from simple overrides and obfuscation to sophisticated con-
text manipulation, multi-modal injections, and memory poisoning.[1, 11, 14, 16, 22, 23, 41] Frameworks like
the OWASP Top 10 for LLM Applications provide essential guidance for identifying and prioritizing risks
[24], while automated red teaming tools like PyRIT and Garak offer scalable methods for vulnerability as-
sessment.[61, 63] However, existing defenses, including input/output filtering, prompt engineering, detection
systems, and adversarial training, form a necessary but imperfect multi-layered strategy. Each layer has
limitations and can often be bypassed by novel or adaptive attacks.[2, 6, 10, 44, 45, 55]

18



8.2 The Ongoing Attacker-Defender Arms Race

The field is characterized by a dynamic arms race: attackers discover new exploits, defenders develop patches
or countermeasures, and attackers subsequently find ways to circumvent these defenses.[6, 10, 18, 56] Much
of the current safety fine-tuning and defense development appears reactive, addressing specific known at-
tack vectors rather than implementing fundamentally robust solutions.[10, 56] This pattern strongly echoes
historical arms races in cybersecurity, such as those involving memory safety vulnerabilities or malware de-
tection.[10, 56] The historical precedent suggests that purely reactive strategies, particularly when dealing
with a vulnerability as fundamental as the instruction/data ambiguity in natural language processing, are
unlikely to achieve sustainable security. Attackers, leveraging the vastness of the input space and human
creativity, often maintain an advantage.[6, 10, 44, 55]

8.3 Challenges and Open Research Questions

Significant challenges remain in securing LLM systems against prompt attacks:

• Principled Defenses: There is a critical need for defenses that address the root cause of instruc-
tion/data ambiguity, rather than merely patching symptoms. This might involve architectural changes,
new training paradigms, or different interaction models.[10, 56]

• Robust Evaluation: Developing reliable and comprehensive methods for evaluating LLM security
against unknown future attacks is crucial. Current benchmarks and metrics often struggle to capture
the full scope of adversarial capabilities and real-world impact.[6, 21, 55]

• Security vs. Usability Trade-off: Balancing the need for strong security measures with main-
taining model performance, usability, and avoiding excessive latency or cost remains a key practical
challenge.[6, 45]

• Ecosystem Security: Security efforts must extend beyond the core LLM to encompass the entire ap-
plication ecosystem, including data pipelines (RAG), plugins, APIs, agentic components, and memory
systems.[1, 24, 32, 41]

• Advanced Threat Mitigation: Addressing emerging threats like multi-modal vulnerabilities, per-
sistent memory attacks, and increasingly sophisticated evasion techniques requires ongoing research
and development.

8.4 The Need for Proactive Security Architectures

Moving forward, achieving trustworthy AI necessitates a shift towards proactive, principled security ar-
chitectures – incorporating security and safety considerations from the initial design stages (”security by
design”).[56] Potential future directions may include exploring formal methods for verifying certain safety
properties [56], developing novel model architectures with inherently better separation of instructions and
data, or creating more constrained and verifiable interaction protocols.

Ultimately, technical solutions alone are insufficient. A holistic, socio-technical approach is required, inte-
grating robust governance frameworks, continuous monitoring and incident response capabilities, transparent
auditing mechanisms, and a clear understanding of the context-dependent risks and harms associated with
specific AI deployments.[13, 24, 25, 26, 27, 30, 31, 35, 60] Continued collaboration between AI researchers,
cybersecurity experts, developers, policymakers, and the broader community will be essential to navigate
the complex security challenges posed by LLMs and to build a future where AI can be deployed safely and
responsibly.[27, 29, 40]

19



References

[1] [6]: https://arxiv.org/pdf/2501.07927

[2] [2]: https://arxiv.org/html/2501.15145v2

[3] [4]: https://www.researchgate.net/publication/390183210_Systematically_Analysing_

Prompt_Injection_Vulnerabilities_in_Diverse_LLM_Architectures

[4] [7]: https://arxiv.org/pdf/2403.04957

[5] [8]: https://arxiv.org/pdf/2411.00459

[6] [9]: https://en.wikipedia.org/wiki/Prompt_injection

[7] [22]: https://www.promptfoo.dev/blog/how-to-jailbreak-llms/

[8] [16]: https://www.boozallen.com/insights/ai-research/how-to-protect-llms-from-jailbreaking-attacks.
html

[9] [17]: https://unit42.paloaltonetworks.com/jailbreaking-generative-ai-web-products/

[10] [5]: https://www.researchgate.net/publication/388853016_Securing_the_Generative_

Frontier_A_Systematic_Analysis_of_Training_Data_Poisoning_and_Prompt_Engineering_

Vulnerabilities_in_Large_Language_Models

[11] [34]: https://www.researchgate.net/publication/389652344_Generative_AI_and_LLMs_for_

Critical_Infrastructure_Protection_Evaluation_Benchmarks_Agentic_AI_Challenges_and_

Opportunities

[12] [27]: https://owaspai.org/docs/ai_security_overview/

[13] [40]: https://genai.owasp.org/

[14] [13]: https://www.cloudflare.com/learning/ai/owasp-top-10-risks-for-llms/

[15] [49]: https://github.com/OWASP/www-project-top-10-for-large-language-model-applications

[16] [24]: https://owasp.org/www-project-top-10-for-large-language-model-applications/

[17] [11]: https://users.umiacs.umd.edu/~jbg/docs/2023_emnlp_hackaprompt.pdf

[18] [46]: https://www.scribd.com/document/803700988/Ignore-This-Title-and-HackAPrompt-Exposing-Systemic-Vulnerabilities-of-LLMs-Through-a-Global-Scale-Prompt-Hacking-Competition

[19] [3]: https://arxiv.org/html/2311.16119v3

[20] [68]: https://www2.eecs.berkeley.edu/Pubs/TechRpts//2024/EECS-2024-123.pdf

[21] [51]: https://mindgard.ai/blog/red-teaming-llms-techniques-and-mitigation-strategies

[22] [59]: https://developer.nvidia.com/blog/defining-llm-red-teaming/

[23] [57]: https://www.confident-ai.com/blog/red-teaming-llms-a-step-by-step-guide

[24] [58]: https://www.promptfoo.dev/docs/red-team/

[25] [61]: https://learn.microsoft.com/en-us/azure/ai-foundry/how-to/develop/

run-scans-ai-red-teaming-agent

[26] [60]: https://github.com/MicrosoftDocs/azure-ai-docs/blob/main/articles/ai-foundry/

concepts/ai-red-teaming-agent.md

[27] [62]: https://github.com/Azure/PyRIT/blob/main/pyproject.toml

20

https://arxiv.org/pdf/2501.07927
https://arxiv.org/html/2501.15145v2
https://www.researchgate.net/publication/390183210_Systematically_Analysing_Prompt_Injection_Vulnerabilities_in_Diverse_LLM_Architectures
https://www.researchgate.net/publication/390183210_Systematically_Analysing_Prompt_Injection_Vulnerabilities_in_Diverse_LLM_Architectures
https://arxiv.org/pdf/2403.04957
https://arxiv.org/pdf/2411.00459
https://en.wikipedia.org/wiki/Prompt_injection
https://www.promptfoo.dev/blog/how-to-jailbreak-llms/
https://www.boozallen.com/insights/ai-research/how-to-protect-llms-from-jailbreaking-attacks.html
https://www.boozallen.com/insights/ai-research/how-to-protect-llms-from-jailbreaking-attacks.html
https://unit42.paloaltonetworks.com/jailbreaking-generative-ai-web-products/
https://www.researchgate.net/publication/388853016_Securing_the_Generative_Frontier_A_Systematic_Analysis_of_Training_Data_Poisoning_and_Prompt_Engineering_Vulnerabilities_in_Large_Language_Models
https://www.researchgate.net/publication/388853016_Securing_the_Generative_Frontier_A_Systematic_Analysis_of_Training_Data_Poisoning_and_Prompt_Engineering_Vulnerabilities_in_Large_Language_Models
https://www.researchgate.net/publication/388853016_Securing_the_Generative_Frontier_A_Systematic_Analysis_of_Training_Data_Poisoning_and_Prompt_Engineering_Vulnerabilities_in_Large_Language_Models
https://www.researchgate.net/publication/389652344_Generative_AI_and_LLMs_for_Critical_Infrastructure_Protection_Evaluation_Benchmarks_Agentic_AI_Challenges_and_Opportunities
https://www.researchgate.net/publication/389652344_Generative_AI_and_LLMs_for_Critical_Infrastructure_Protection_Evaluation_Benchmarks_Agentic_AI_Challenges_and_Opportunities
https://www.researchgate.net/publication/389652344_Generative_AI_and_LLMs_for_Critical_Infrastructure_Protection_Evaluation_Benchmarks_Agentic_AI_Challenges_and_Opportunities
https://owaspai.org/docs/ai_security_overview/
https://genai.owasp.org/
https://www.cloudflare.com/learning/ai/owasp-top-10-risks-for-llms/
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://users.umiacs.umd.edu/~jbg/docs/2023_emnlp_hackaprompt.pdf
https://www.scribd.com/document/803700988/Ignore-This-Title-and-HackAPrompt-Exposing-Systemic-Vulnerabilities-of-LLMs-Through-a-Global-Scale-Prompt-Hacking-Competition
https://arxiv.org/html/2311.16119v3
https://www2.eecs.berkeley.edu/Pubs/TechRpts//2024/EECS-2024-123.pdf
https://mindgard.ai/blog/red-teaming-llms-techniques-and-mitigation-strategies
https://developer.nvidia.com/blog/defining-llm-red-teaming/
https://www.confident-ai.com/blog/red-teaming-llms-a-step-by-step-guide
https://www.promptfoo.dev/docs/red-team/
https://learn.microsoft.com/en-us/azure/ai-foundry/how-to/develop/run-scans-ai-red-teaming-agent
https://learn.microsoft.com/en-us/azure/ai-foundry/how-to/develop/run-scans-ai-red-teaming-agent
https://github.com/MicrosoftDocs/azure-ai-docs/blob/main/articles/ai-foundry/concepts/ai-red-teaming-agent.md
https://github.com/MicrosoftDocs/azure-ai-docs/blob/main/articles/ai-foundry/concepts/ai-red-teaming-agent.md
https://github.com/Azure/PyRIT/blob/main/pyproject.toml


[28] [63]: https://github.com/NVIDIA/garak

[29] [64]: https://github.com/NVIDIA/garak/blob/main/FAQ.md

[30] [65]: https://docs.nvidia.com/nemo/guardrails/latest/evaluation/

llm-vulnerability-scanning.html

[31] [66]: https://docs.avidml.org/developer-tools/python-sdk/integrations/garak

[32] [1]: https://www.researchgate.net/publication/386577011_Trust_No_AI_Prompt_Injection_

Along_The_CIA_Security_Triad

[33] [41]: https://papers.nips.cc/paper_files/paper/2024/file/eb113910e9c3f6242541c1652e30dfd6-Paper-Conference.
pdf

[34] [42]: https://feeds.transistor.fm/secure-talk-podcast

[35] [28]: https://www.krasamo.com/llm-security/

[36] [33]: https://www.reddit.com/r/LocalLLaMA/comments/1k0iu5z/announcing_realharm_a_

collection_of_realworld/

[37] [36]: https://cetas.turing.ac.uk/publications/evaluating-malicious-generative-ai-capabilities

[38] [30]: https://eprints.whiterose.ac.uk/id/eprint/223407/1/Risk_of_What.pdf

[39] [35]: https://github.com/mlip-cmu/s2025/blob/main/lectures/23_safety/safety.md

[40] [31]: https://philarchive.org/archive/FEAROW

[41] [12]: https://www.cs.umd.edu/~jbg/docs/2023_emnlp_hackaprompt.pdf

[42] [44]: https://learnprompting.org/blog/hackaprompt-1-results

[43] [23]: https://www.procheckup.com/blogs/posts/2024/march/invisible-prompt-injection/

[44] [15]: https://iwcon.live/wp-content/uploads/2023/11/Main-Prompt-Injection-Implications-Attacks-and-Mitigations_
compressed.pdf

[45] [38]: https://www.promptfoo.dev/blog/prompt-injection/

[46] [1]: https://www.researchgate.net/publication/386577011_Trust_No_AI_Prompt_Injection_

Along_The_CIA_Security_Triad

[47] [69]: https://learnprompting.org/blog/what-is-model-context-protocol

[48] [70]: https://buttondown.com/ainews/archive/ainews-grok-2-and-chatgpt-4o-latest-confuses/

[49] [71]: https://simonwillison.net/tags/security/?page=2

[50] [37]: https://plextrac.com/the-new-artificial-intelligence/

[51] [72]: https://www.appsecpnw.org/speaker/jason_haddix/

[52] [47]: https://maven.com/learn-prompting-company/ai-red-teaming-and-ai-safety-masterclass

[53] [48]: https://paper.hackaprompt.com/

[54] [10]: https://arxiv.org/html/2501.11183v1

[55] [56]: https://www.researchgate.net/publication/388232623_Can_Safety_Fine-Tuning_Be_

More_Principled_Lessons_Learned_from_Cybersecurity

[56] [73]: https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-2e2025.pdf

21

https://github.com/NVIDIA/garak
https://github.com/NVIDIA/garak/blob/main/FAQ.md
https://docs.nvidia.com/nemo/guardrails/latest/evaluation/llm-vulnerability-scanning.html
https://docs.nvidia.com/nemo/guardrails/latest/evaluation/llm-vulnerability-scanning.html
https://docs.avidml.org/developer-tools/python-sdk/integrations/garak
https://www.researchgate.net/publication/386577011_Trust_No_AI_Prompt_Injection_Along_The_CIA_Security_Triad
https://www.researchgate.net/publication/386577011_Trust_No_AI_Prompt_Injection_Along_The_CIA_Security_Triad
https://papers.nips.cc/paper_files/paper/2024/file/eb113910e9c3f6242541c1652e30dfd6-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2024/file/eb113910e9c3f6242541c1652e30dfd6-Paper-Conference.pdf
https://feeds.transistor.fm/secure-talk-podcast
https://www.krasamo.com/llm-security/
https://www.reddit.com/r/LocalLLaMA/comments/1k0iu5z/announcing_realharm_a_collection_of_realworld/
https://www.reddit.com/r/LocalLLaMA/comments/1k0iu5z/announcing_realharm_a_collection_of_realworld/
https://cetas.turing.ac.uk/publications/evaluating-malicious-generative-ai-capabilities
https://eprints.whiterose.ac.uk/id/eprint/223407/1/Risk_of_What.pdf
https://github.com/mlip-cmu/s2025/blob/main/lectures/23_safety/safety.md
https://philarchive.org/archive/FEAROW
https://www.cs.umd.edu/~jbg/docs/2023_emnlp_hackaprompt.pdf
https://learnprompting.org/blog/hackaprompt-1-results
https://www.procheckup.com/blogs/posts/2024/march/invisible-prompt-injection/
https://iwcon.live/wp-content/uploads/2023/11/Main-Prompt-Injection-Implications-Attacks-and-Mitigations_compressed.pdf
https://iwcon.live/wp-content/uploads/2023/11/Main-Prompt-Injection-Implications-Attacks-and-Mitigations_compressed.pdf
https://www.promptfoo.dev/blog/prompt-injection/
https://www.researchgate.net/publication/386577011_Trust_No_AI_Prompt_Injection_Along_The_CIA_Security_Triad
https://www.researchgate.net/publication/386577011_Trust_No_AI_Prompt_Injection_Along_The_CIA_Security_Triad
https://learnprompting.org/blog/what-is-model-context-protocol
https://buttondown.com/ainews/archive/ainews-grok-2-and-chatgpt-4o-latest-confuses/
https://simonwillison.net/tags/security/?page=2
https://plextrac.com/the-new-artificial-intelligence/
https://www.appsecpnw.org/speaker/jason_haddix/
https://maven.com/learn-prompting-company/ai-red-teaming-and-ai-safety-masterclass
https://paper.hackaprompt.com/
https://arxiv.org/html/2501.11183v1
https://www.researchgate.net/publication/388232623_Can_Safety_Fine-Tuning_Be_More_Principled_Lessons_Learned_from_Cybersecurity
https://www.researchgate.net/publication/388232623_Can_Safety_Fine-Tuning_Be_More_Principled_Lessons_Learned_from_Cybersecurity
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-2e2025.pdf


[57] [18]: https://arxiv.org/html/2504.02080v1

[58] [19]: https://www.arxiv.org/pdf/2504.02080

[59] [14]: https://arxiv.org/html/2502.00735

[60] [25]: https://wtit.com/blog/2025/04/17/owasp-top-10-for-llm-applications-2025/

[61] [45]: https://coralogix.com/ai-blog/prompt-injection-attacks-in-llms-what-are-they-and-how-to-prevent-them/

[62] [39]: http://arxiv.org/pdf/2403.04786

[63] [53]: https://arxiv.org/html/2504.18333v1

[64] [54]: https://arxiv.org/html/2502.12630v1

[65] [55]: https://arxiv.org/html/2502.02260v1

[66] [32]: https://arxiv.org/pdf/2503.09780

[67] [74]: https://openreview.net/forum?id=fwHVclv0ij

[68] [43]: https://www.researchgate.net/publication/389821358_AgentDAM_Privacy_Leakage_

Evaluation_for_Autonomous_Web_Agents

[69] [75]: https://e-discoveryteam.com/tag/defcon/

[70] [29]: https://www.deezer.com/us/show/4510667

[71] [76]: https://www.bugcrowd.com/blog/a-low-cost-hacking-sidekick-baby-steps-to-using-offensive-ai-agents/

[72] [77]: https://www.blackhat.com/us-24/sponsored-sessions/schedule/index.html

[73] [78]: https://www.blackhat.com/us-24/briefings/schedule/

[74] [79]: https://www.blackhat.com/us-25/ai-summit.html

[75] [20]: https://arxiv.org/html/2502.00735v1

[76] [21]: https://arxiv.org/pdf/2401.09002

[77] [67]: https://arxiv.org/html/2306.05499v2

[78] [52]: https://cloudnativenow.com/topics/containers/securing-genai-workloads-protecting-the-future-of-ai-in-containers/

[79] [50]: https://muckrack.com/john-mello/articles

[80] [26]: https://www.hackerone.com/blog/hackerone-and-owasp-top-10-llm-powerful-alliance-secure-ai

22

https://arxiv.org/html/2504.02080v1
https://www.arxiv.org/pdf/2504.02080
https://arxiv.org/html/2502.00735
https://wtit.com/blog/2025/04/17/owasp-top-10-for-llm-applications-2025/
https://coralogix.com/ai-blog/prompt-injection-attacks-in-llms-what-are-they-and-how-to-prevent-them/
http://arxiv.org/pdf/2403.04786
https://arxiv.org/html/2504.18333v1
https://arxiv.org/html/2502.12630v1
https://arxiv.org/html/2502.02260v1
https://arxiv.org/pdf/2503.09780
https://openreview.net/forum?id=fwHVclv0ij
https://www.researchgate.net/publication/389821358_AgentDAM_Privacy_Leakage_Evaluation_for_Autonomous_Web_Agents
https://www.researchgate.net/publication/389821358_AgentDAM_Privacy_Leakage_Evaluation_for_Autonomous_Web_Agents
https://e-discoveryteam.com/tag/defcon/
https://www.deezer.com/us/show/4510667
https://www.bugcrowd.com/blog/a-low-cost-hacking-sidekick-baby-steps-to-using-offensive-ai-agents/
https://www.blackhat.com/us-24/sponsored-sessions/schedule/index.html
https://www.blackhat.com/us-24/briefings/schedule/
https://www.blackhat.com/us-25/ai-summit.html
https://arxiv.org/html/2502.00735v1
https://arxiv.org/pdf/2401.09002
https://arxiv.org/html/2306.05499v2
https://cloudnativenow.com/topics/containers/securing-genai-workloads-protecting-the-future-of-ai-in-containers/
https://muckrack.com/john-mello/articles
https://www.hackerone.com/blog/hackerone-and-owasp-top-10-llm-powerful-alliance-secure-ai

	Introduction
	Understanding Generative AI Security and Harms
	Core Principles of AI Security
	Taxonomy of Harms: From Misinformation to Physical Risks
	The Unique Attack Surface of LLM-based Systems

	Deconstructing Prompt Attacks: Hacking, Injection, and Jailbreaking
	Defining Prompt Hacking, Prompt Injection, and Jailbreaking
	A Taxonomy of Attack Techniques
	Case Study: The HackAPrompt Competition

	The OWASP Top 10 for LLM Applications: A Framework for Risk
	Overview of the OWASP LLM Top 10
	Detailed Analysis of Key Risks
	Prevalence and Impact

	Defense Mechanisms Against Prompt Attacks
	Detailed Defense Strategies
	Input Sanitization and Output Filtering/Validation
	Prompt Engineering Defenses and Instruction Hierarchies
	Detection-Based Approaches
	Adversarial Training and Robustness Enhancement

	Limitations and the Ongoing Arms Race

	AI Red Teaming and Adversarial Testing
	Methodologies for LLM Red Teaming
	Automated Vulnerability Scanning Tools
	Evaluating Attack Success Rates and Model Robustness

	Advanced Threats and Real-World Implications
	Advanced Prompt Injection Techniques
	Real-World Harms and Case Studies
	Potential for Physical Harms and Safety-Critical Failures

	Conclusion and Future Directions
	Summary of the Current State
	The Ongoing Attacker-Defender Arms Race
	Challenges and Open Research Questions
	The Need for Proactive Security Architectures


